Innovative Modular Approach to High Concentration CSP Systems. Results and Achievements From the First-of-its-Kind 300 kWt Semi-Fresnel Fixed Mirror Module Prototype Up and Running

Adrián Peña-Lapuente, Cristóbal Villasante, David Ramirez, Miguel Herrador, Daniel Pereira, Yannick Barat, Josep Ubach, Mirko Saur, Íñigo Pagola, Ana Bernardos, David Olaso-lo, Saioa Herrero

1 CENER (National Renewable Energy Centre of Spain), Spain
2 TEKNIKER, Spain
3 INCRESCENDO CONSULTORES, Spain
4 AALBORG CSP, Denmark
5 COBRA INSTALACIONES Y SERVICIOS, Spain
6 SIREA GROUP, France
7 RIOGLASS SOLAR, Spain
8 SENIOR FLEXONICS, Germany

Abstract. This paper presents the successes achieved during the construction, commissioning and testing of an innovative approach to stationary reflector/tracking absorber (SRTA) systems that demonstrate the viability of this kind of solar thermal solution. This novel approach is based on a Fresnel concept of a classical SRTA, which leads to cost reductions thanks to reducing the height reached by the solar field. In addition, it provides the SRTA systems with another extra layer of adaptability to different climatic, orographic and even economic situations. In order to demonstrate the feasibility of this solution, the MOSAIC project has constructed and commissioned a prototype based on this approach, surpassing challenges such as the flexible piping and showing new improvements that could be introduced in the future MOSAIC modules. The first tests have been conducted on this prototype demonstrating, still under suboptimal operational conditions, an efficiency of up to 18.6 % and the possibility to operate this system using molten salts for high output temperatures that could make the most of the 3D concentration. The modularity, versatility and adaptability demonstrated by this concept all along the project development lead to a wide portfolio of opportunities to integrate the MOSAIC concept in a variety of scenarios, free space availabilities, and different applications, while maintaining a reduced cost of energy production.

Keywords: MOSAIC project, Fresnel solar field, SRTA system, solar thermal power plant, SHIP plant
Introduction

SRTA Systems

Spherical concentrators allow configurations based on fixed solar fields and mobile receivers, known as stationary reflector/tracking absorber (SRTA) systems. This allows several advantages while raising important challenges when implementing large power systems.

Solar bowl systems can be combined forming a huge plant of hundreds or even thousands of modules creating a solar mosaic in the terrain that can be adapted to cover and make the most of all free spaces with modules, whatever the available terrain would be.

Regarding the solar field, a solar bowl able to produce a good amount of energy during the first and last hours of the day, especially in winter, is a solar bowl whose structure reaches high altitudes. That means that its construction costs would also be high due to the need to have a structure that can maintain a certain degree of optical quality, so it has to be quite robust.

To deal with this increased cost, a Fresnel approach can be applied to the solar field which in addition offers a more versatile and flexible adaptation of the concentrator to the actual orography of each specific site [1]. This “fresnelization” consists of the collapse of the bowl into sections of different radii bowls that shares a common centre of spheres, so all of them produce their focus along the same straight line. In addition, this also increases the flexibility to provide ad-hoc modular solutions to each specific application (heat or electricity, low or high output power, different solar radiation profiles, different terrain shapes, etc.) while keeping 3D high concentration ratios along a single linear receiver.

In order to explore and determine the real potential of the Fresnel approach to modular spherical concentrators, it is mandatory to have practical experience designing, building, and testing a representative module, which has been done in the MOSAIC project.

After several years of development, this project has come to an end with the construction, commissioning, and successful performance of the first operational tests of the proposed prototype, which is based on a semi-Fresnel configuration and a light cable-driven tracking system. This article shows the first results that demonstrate how this concept makes the construction and operation of SRTA systems viable.

MOSAIC system description

Figure 1 shows the system, erected in CENER facilities in Sangüesa (Spain) and already in operation, comprising a central bowl, and two spherically curved partial outer rings made of 1 m² mirrors (1x1 m²) installed in 5x5 and 3x3 mirror modules respectively. The receiver tracks the concentrated flux actuated by 8 cables pulled from 4 towers.

Figure 1. Solar field saw from the top of the central tower (left) and a global view of the system during operation (right).
The aperture diameter of the prototype MOSAIC solar field is 30 m and peak thermal power is close to 300 kWt [2]. The southernmost section of the concentrator has been deleted from the construction plan, and then not erected in the prototype, due to its negligible impact on the annual energy collected, in comparison with the cost of erecting those modules, shown during the optical analysis process.

Achievements

Challenges addressed during the construction of the prototype

Solar field and structure

Following and deepening more in the modularity principle, the Mosaic prototype has been designed to be formed by 2 different types of mirror modules. In this case, the modularity of the solar field provides the means to standardize the structures that form the whole solar field, leading to a reduction of the structure fabrication costs through economies of scale. Then, two different assembly procedures have been developed, each one corresponding to a module type.

In this sense, two mirror-fixing methodologies have been developed and tested: the assemblage of the mirrors using a jig (Figure 2 left) whose surface can be adapted to the needed module shape [3], and the assembly of mirrors on-site. The maximum normal error estimated from partially characterized solar field has been lower than 1 mrad, which is low enough taking into account both the focal distance (between 7.5 m and 9 m, depending on the curvature radius) and the receiver diameter (30 cm, up to 50 cm in the uppermost point of the cone section), so the spillage losses derived from this geometry are negligible.

![Figure 2. A mirror module assembled using the developed jig (left) and the canting process, at module level, being applied to a 3-by-3 module placed in the inner ring (right).](image)

On one hand, 3-by-3 modules have been assembled with the aid of a jig placed at ground level that has assured good quality of the mirror canting of each module. In addition, the fact that the module is at ground level and the mirrors can be left resting on spheres has led to an easy and safe assembling procedure. The canting of these modules was evaluated once they were lifted atop of their corresponding pillars on field, and the high quality module canting achieved using the jig was then confirmed.

On the other hand, due to the complicated logistics involved in lifting such large assembled modules, 5-by-5 modules have been assembled directly on the field, and in a two-step assembly procedure. This begins by preassembling the mirrors in a favourable position on the solar field, using ad-hoc tooling, and then lifting the module in two parts to its final position on the solar field. Once there, the second step is performed, where the canting of each mirror is adjusted in a precise way. This procedure reaches high levels of quality due to the fine adjustment performed during the second step.
This two steps procedure has ended up in a more time-consuming, and even less practically implementable, task than the jig procedure. Another fact to take into account, in terms of construction time, is that these 25-mirror modules have to be assembled outdoors, which means that this task is much longer and could even produce delays in the construction of the solar field due to unfavourable weather conditions.

An issue that was raised during the production of the 5-by-5 modules, in comparison with the lower-size modules, is the fact that they cannot be easily transported by road and lifted in a cost-economical way due to their size, so when they are produced in a far workshop they have to be produced in two different pieces. This in part converts the modules into lower-size modules but needs to design and build a new different structure and apply another assembly methodology. Additionally, 3-by-3 modules, and even 4-by-4 modules can be placed over a single pillar, so the assembly and canting process is easier and cheaper to perform.

All the aforementioned reasons and experiences clearly show that having a solar field composed only of one type of standardized structure would be easier to design, manufacture, transport, assemble, and cant, leading to a great cost reduction in the final construction cost of the solar field. In addition, a study on logistics, assemble and lifting of the modules based on the construction and commissioning experience concluded that the ideal module size would be a 4-by-4 module. In this way, collecting energy using the Mosaic module would be cheaper thanks to making the most of the economies of scale. Besides, security issues could introduce some restrictions that increase costs and construction times, so reducing dangerous activities in the assembly procedure will contribute to construction cost reduction.

Furthermore, thinking about a commercial implementation, the design of the template, with 4 pulling towers and a central tower to support the thermal loop, piping and parking oven would be reviewed. The central tower would disappear, or at least reduced in size and rigidity needs, because the thermal loop would be shared by different modules, further reducing the metal structure cost. Then, the piping and flexible hose could be held in place by cables from the pulling towers.

Flexible hose system

In such a complex thermal loop where the receiver tracks the sun, a flexible hose is mandatory in order to connect the receiver and the rest of the thermal loop. So, in order to connect the moving receiver with the skid where the main elements of the thermal loop are located, a bespoke flexible hose has been designed and manufactured, taking into account the singularities of the application and the future use of molten salts as HTF. The hoses have been extended to a complete system by adapting an additional cable protecting hose which acts bridging in a safe manner the cables, connecting from the skid to the receiver. The behaviour of this flexible hose was tested prior to its installation on the field by performing sagging tests and measuring the forces that appeared in the system to take them into account when designing the tracking system.

Tracking system

The operation of this prototype is based on the fact that the receiver is the moving part. This is a disruptive approach characteristic of spherical concentrators that changes how the operation procedure has to be defined. For this, a cable-driven tracking system developed to position the receiver has been successfully implemented, as well as the novel vision system to give feedback on the position of the receiver. Different procedures have been carried out to improve the open-loop accuracy to values between 30-100 mm. In addition, a complete set of operation modes that foresee all different scenarios has been defined, implemented, and successfully tested.
Thinking about the future massive implementation of MOSAIC systems, the developed tracking system would be particularly useful since it could be used as a crane in the construction of the solar field. With the development of the appropriate tooling, the cable system could be used to pick up the pre-assembled modules with the mirrors from the side of the solar field and lift them to their final position over the corresponding mast, which would lead to reducing the need for the use of cranes, further reducing the cost of building the solar field. This was also tested during the construction of the prototype taking advantage of the assembly manoeuvre of the receiver and the flexible hose, where a pick-up manoeuvre of an object at ground level was carried out, as can be seen in Figure 3.

![Image](image_url)

Figure 3. Receiver elevation process using the tracking system to bring it from the ground level (left) to the position in which the flexible hoses were soldered (right).

Test results and discussion

The initial tests were carried out during October and November 2021 in two phases.

The first set of tests performed was oriented to prove the operability of the prototype. During those tests, the ad-hoc modes of operation and the correct transition between them were tested in order to verify their convenience, as well as the capacity to control each subsystem during a real operation. At the same time, the data acquisition methods were collecting the data produced during the operation, so those tests could be used to produce a first estimation of the total efficiency of the system.

The second set of tests, focused on the performance of the prototype, were performed under sub-optimal conditions, such as the latitude of the site where the prototype was erected (42.6°) and especially the time of the year, when both the optical efficiency, due to the low elevation of the sun and the solar field tilting, and the receiver efficiency due to the concentration footprint on its surface, were not close enough to their peak values. Those tests were performed operating at the maximum mass flow rate in order to verify that the whole system can be operated without taking risks of damaging any subsystem due to any error occurring.

In order to calculate that efficiency, it has to be taken into account that the solar field does not track the sun, which means that the cosine effect of each module will vary a lot along the operation of the module and it is not the same for the entire solar field nor evolves in the same way. This is similar to what happens in the solar field of a central receiver power plant and the cosine effect that has an impact on each heliostat.

For this reason, to calculate the efficiency, the reference value of incident power will be estimated from the product of the DNI and the total mirror area. In this way, the solar-to-heat efficiency of the MOSAIC module has reached a preliminary value of 18.6% (see Table 1).
Table 1. Results obtained from the efficiency test

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>191.5</td>
<td>303.4</td>
<td>788</td>
<td>0.314</td>
<td>75.5</td>
<td>406.1</td>
<td>18.6</td>
</tr>
</tbody>
</table>

Taking into account that no cleaning actions were performed in the last weeks and the soiling was estimated to reduce the reflectivity of the mirrors by 4%, the efficiency of the system when having clean mirrors would rise at least to 19.3%. This value is expected to be further improved through operation experience and improving the tuning of subsystems, which nowadays is under study and the MOSAIC team is working on finding funding resources to work more in-depth on the optimal operation of this concept.

Furthermore, some tests were performed to assess the time needed and the cooling of the receiver when it is taken from the oven to focus. All along them, the mass flow rate was at maximum for receiver integrity reasons as in the previous tests, and the whole manoeuvre was performed manually. These tests were performed to assess the freezing risk possibility during this manoeuvre in the case of using molten salts as HTF in future developments.

To obtain some conclusions, the physical properties of molten salts compared to thermal oil (Helisol 5A) were taken into account. During the test, the HTF cooled from 105.5 °C to 93.2 °C, that is, 12.3 °C. Although the density of solar salt is much bigger than the density of Helisol 5A and the thermal losses could be higher, it does not look likely that the molten salts would be cooled to the freezing point (240 °C) during this manoeuvre if they are properly preheated up to 290 °C. Moreover, the test took 17 minutes, a time that could be reduced with experience and automatic operation. In conclusion, it seems that there would not be a freezing risk in the case of using molten salts during that critical manoeuvre.

Adaptability to fit an evolving market

The adaptability underlined before can be used to advantage in different ways to reduce even more the cost of the solar field. One option is the use of the natural terrain slopes, which usually can be an issue, to our advantage by adapting the solar field to their shape.

In a typical solar thermal power plant, rough terrains suppose several problems such as possible shadows for central receiver power plants or the inability to install a complete loop for parabolic trough power plants. For a MOSAIC system, this kind of terrain can be even beneficial allowing to reduce the cost of the solar field structure by having a solar field that adapts to terrain slopes and irregularities (Figure 4).

![Figure 4](image_url)

Figure 4. (Left) Illustration of adaptability to terrains and (right) an artwork depicting a solar field adapted to terrain irregularities.
That solution would place each mirror module at the same height from the ground level, following the topography of the terrain, so the construction costs are low while the mirrors can be placed at more convenient heights to make the most of their annual energy collection capability, provided that all mirrors are oriented to a common point that is the shared centre of all the spheres. This would end up in a high level of concentrated power on the receiver while keeping low the construction costs because the modules do not reach high altitudes with respect to their base level and can be implemented by maintaining the spherical bowl and spherical rings configuration or moving to a configuration more similar to a heliostat field where each mirror module can be freely placed where it is of the most interest.

Conclusions

The erection and operation of a large SRTA system have a number of challenges that have been addressed and overpassed during the MOSAIC project. The success and conclusions obtained from this project open a new path to be further explored in the field of solar thermal technologies: a new contester equipped with a series of novel characteristics such as modularity, versatility and adaptability while taking advantage of 3D concentration to produce efficient high concentration ratios.

The geometry of the Semi-Fresnel SRTA configuration allows an easy canting procedure that will guarantee a high-quality surface shape while the cable-based tracking system allows the development of large tracking systems at affordable costs as well as offering other advantages like the possibility to reduce the need for cranes during the lifting of the solar field.

The developed and erected prototype has reached solar-to-heat efficiencies up to 18.6% during the preliminary tests performed, under sub-optimal conditions, so it is expected to reach better performances once the operation of the system and the tuning of the different subsystems will be optimized.

The modularity, in conjunction with the versatility demonstrated by the semi-Fresnel concept all along the project development and the prototype construction, opens a wide range of applications where SRTA systems can be implemented. From huge CSP plants composed of thousands of standard-shaped modules that could even grow in capacity by adding more modules if the power needs of their coverage area rise, to Solar Heat for Industrial Processes (SHIP) applications where the solar field can be adapted to fit the free spaces of an industrial park, to natural terrain slopes or building integrated, the adaptability of MOSAIC concept makes it a proved and advanced alternative to cope with green energy integration in different situations and scenarios. Furthermore, different economic scenarios could be faced in the future, meaning that adaptable systems like MOSAIC can be shaped to make the most of the possible cost reduction opportunities that could appear.

Data availability statement

The data showed in this paper is part of a preliminary analysis performed from the first series of tests obtained from the suboptimal operation of the MOSAIC prototype. This data has not been uploaded to any repository but are planned to be shared in repositories such as Zenodo OpenAIRE (Open Access Infrastructure for Research in Europe) (https://zenodo.org/), when they would be more complete, to a public repository for reaching a further dissemination of the results and the system possibilities.

Author contributions

- Adrián Peña-Lapuente: Investigation, Formal Analysis, Methodology, Writing – original draft
Competing interests

Authors have no conflicts of interest to declare that are relevant to the content of this article.

Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 727402.

Acknowledgement

We would like to thank the European Commission for the funding granted to make the MO-SAIC project possible. This challenging project would never have achieved its ultimate success without the tireless work of each and every one of the people who have participated in it. Also, we thank the Auroville Solar Bowl team for their invaluable support and the knowledge of previous experience you have offered us, as well as Joel H. Goodman for his interest and continuous flow of ideas for future implementations.

References