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Abstract. The camera target method is the most commonly used calibration method for helio-
stats at solar tower power plants to minimize their sun tracking errors. In this method, individual 
heliostats are moved to a white surface and their deviation from the targeted position is meas-
ured. A regression is used to calculate errors in a geometry model from the tabular data ob-
tained in this way.  For modern aim point strategies, or simply heliostats in the rearmost end 
of the field, extremely high accuracies are needed, which can only be achieved by many de-
grees of freedom in the geometry model. The problem here is that the camera target method 
produces only a very small data set per heliostat, which limits the number of free variables and 
thus the accuracy. In this work, we extend existing ray tracing methods for solar towers with a 
differentiable description, allowing for the first time a data-driven optimization of object param-
eters within the ray tracing environment. Therefore, the heliostat calibration can take place 
directly within the ray tracing environment. Thus, the image data acquired during the measure-
ment can be processed directly and more information about the orientation of the heliostat can 
be obtained. Within a simple example we show the advantages of the method, which con-
verges faster and corrects errors that could not be considered before. Without any disad-
vantages or additional costs, the state-of-the-art calibration method can be improved. 
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Introduction 

 

The performance and levelized cost of energy of a solar tower power plant are directly linked 
to the functionality of its heliostats. The better the heliostats can redirect the sun to the receiver, 
the more power can be generated. In contrast, incorrect alignment not only results in lower 
energy output, but can cause temperature spikes or gradients and compromise the longevity 
of the components. The most frequently used calibration (cal.) method, to correct the heliostat 
specific errors at commercial power plants is the Camera-Target method. In this method, a 
single focal spot is moved from the receiver to a white target below. From the sun and heliostat 
position, as well as the difference between the aimed and actual aiming point of the focal spot, 
the errors of the heliostat can be determined by means of mathematical regression. The 
method is used because it can be fully automated, reliable and quite accurate for a certain 
period of time after the measurement. The biggest weakness of the method is the time needed 
per measurement. With about 60 seconds per measurement the (tabular) data set of a single 
heliostat rarely grows by more than a few data points per year. The measurement should also 
not be done frequently, as the process itself decreases the power on the receiver. In order to 
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describe the heliostat completely with all possible errors (rotation, distortion, displacement, 
partly with angle and time dependencies) it needs more degrees of freedom in the regression 
but the data situation including just pre-extracted features of the focal spot is not sufficient. 
Thus, the accuracy is not feasible for distant heliostats or modern aimpoint control strategies. 
There are many other heliostat calibration methods [1] but any new method must measure up 
to this standard procedure. An improvement of the Camera-Target method raises the bench-
mark for all other methods. 

Today, ray tracing is already a central component of solar tower power plants. It is used for 
field design, flux density prediction and target point strategies. For this purpose, all information 
known about the solar region of the power plant is collected and from this a 2D image of the 
flux density is calculated. However, obtaining the data of the field is a complex process, partly 
with a high error propagation. 

 

 Over the last few years, ray tracers have taken over the data processing themselves. So-
called inverse rendering, of which differentiable (diff.) ray tracing is a subcategory, can derive 
3-dimensional quantities, such as shape [2], material property, or both [3] from 2D images. In 
contrast to classical ray tracing, additionally to just calculating the rays directions, partial de-
rivatives of all ray interactions are stored inside a mathematical graph, which allows the use of 
gradient-based optimization and backpropagation as well as to be integrated into AI optimiza-
tion routines. The difficulty of this method lies in the differentiable description of the scene to 
be examined. These techniques became more sophisticated and now make whole scenes 
differentiable [4] or enable new sources of illumination [5]. The range of tools is very wide [6], 
but only a few of these tools are used industrially. Main applications are in lens design [7] or 
some test cases in autonomous driving [8][9]. In fact, these examples are rare, but already 
show that diff. ray tracing can optimize the data supply chain while accurately reconstructing 
important object properties. Nevertheless, as far as known to the authors, a theoretical con-
sideration or even a deployment in (any) thermal solar power plants has not taken place yet. 

This work proposes an in situ improvement of Camera-Target regression using differentiable 
ray tracing. The direct use of image data increases the information content of each calibration, 
which allows faster convergence to the global optimum and even to correct errors which have 
been completely neglected so far, e.g. rotational displacements, canting or focusing. At the 
same time, diff. ray tracing allows a physics-regulated optimization, which provides better gra-
dients than common methods. This not only reduces the number of measurements required, 
it also allows optimization of previously neglected parameters such as canting, focusing, etc. 

To show this, the principles of the state-of-the-art calibration will be presented in the following. 
Then the integration of diff. ray tracing into the solar power plant process will be explained and 
how the scenery at the solar tower can be made differentiable. Both methods are then com-
pared before the results are demonstrated and discussed on a minimal example. 



 

Figure 1: Sketch of a strongly deformed heliostat during the calibration process. The shown 
heliostat has some deformation on its pedestal and its first axis, which leads to an offset on 
the target, compared to a heliostat without errors. The shown error can be decomposed into 

two rotational displacements   leading to the offset, and x, deforming the focal spot but 

not changing the offset. The calibration algorithm tries to quantify the deviations of  and  
(as well as other error sources) by means of the deviation between nis and ndesignated. 

Heliostat Field Control and Calibration 

 

Heliostat calibration is carried out regularly at solar towers to counteract individual heliostat 
errors, which affect the ability of the heliostats to redirect the sun to the correct, designated 
position on the receiver. The calibration is therefore directly responsible for the amount of elec-
tricity generated. For example, the difference from 0 to 6 mrad tracking error can reduce the 
overall power generation by around 6% [10]. Incorrectly positioned focal spots can also cause 
local overheating and damage components. 

The heliostat accuracy is influenced by several factors, including misalignment due to torsion, 
mechanical deformation, gear backlash, and local wind speeds. But due to the size of the 
fields, it is not possible to determine each of these errors through direct measurement. Instead, 
the individual errors must be derived from easily accessible measurements and mathematical 
regressions. 

The Camera-Target method (Stone method [11]) is one of the oldest and as of today the most 
widely used calibration method in commercial solar tower power plants. For the calibration 
process, the focal spot of each heliostat is moved individually from the receiver to a Lambertian 
white target, which is usually located below the receiver (see Fig. 1). A camera then takes a 
picture of the focal spot. From this image, the focal spot's centroid of mass is derived by an 
image processing algorithm. This is stored together with the sun position as 



 

Figure 2: Optimization workflow for heliostat calibration using diff. ray tracing. The update 
routine strongly resembles that of neural networks, which is only made possible by the diffe-

rentiable description of the power plant. 

well as the current orientation of the heliostat. This information is then used to determine an 
underlying function template, in most cases an error-based geometric model (GM) by regres-
sion. 

The GM can include all sources of pre-modeled mathematically or physically described errors 
(In fact, the error parameters don't have to be correlated with physical errors inside a geomet-
rical model. In addition, strict mathematical function templates, e.g. polynomials, can be ap-
plied.). As long as the available data set is large enough, the Stone method is one of the most 
accurate and reliable methods for heliostat calibration. 

But this is not always the case. The time per calibration measurement is the biggest weakness 
of the Stone method. With about one minute measurement time per heliostat, a single heliostat 
(in a field of thousands) is measured only a few times a year. The situation is aggravated by 
the fact that the measurement should be performed as infrequently as possible, since the 
measurement negatively affects the incoming power on the receiver. At the same time, the 
required tracking accuracy of the heliostat is very high and therefore induces a huge number 
of free variables inside the GM for a full description. 

In summary, the Stone method is an accurate and above all reliable calibration, which is used 
as the standard method at most power plants, even though it has considerable downsides. It 
produces very little data in combination with a sprawling GM, neglecting non-linearities. 

Differentiable Ray Tracing for Solar Tower Optimization 

 

Differentiable ray tracing allows the classical ray tracing process to be performed in reverse. 
This means that the 3-dimensional scene no longer has to be completely defined, but conclu-
sions can be drawn about the scene from the 2D image, e.g. from measurement data. From 
this, quantities which would otherwise be very difficult to measure, can be obtained. 

For this purpose, the ray tracer is integrated into a neural network training pipeline (compare 
Fig. 2). Diff. ray tracing starts like classical (forward) ray tracing by defining environment pa-
rameters (material, light, geometry, etc.) as well as camera ex- and intrinsics (camera angle, 
lenses, etc.). The object properties to be examined (alignment, position, etc.) only need to be 



defined approximately. Often, an ideal geometry is sufficient [3]. Using this coarse approxima-
tion, the ray tracer generates images that are not exactly identical with the observations but 
deviate according the the inaccuracy of the parameter choice. 

 

Figure 3: Sketch of the variables for calculating the irradiance profile of the heliostat. 

Exactly like for the training of neural networks, the resulting image is then compared with the 
ground truth, which is, in case of the solar tower, the calibration image. The comparison is 
done by an objective/loss function as it is used for neural networks (e.g. L1 or L2 pixel-wise 
losses). In fact, all other NN optimization functions (e.g. weight decay, optimizers and sched-
ulers) can be used in diff. ray tracing as well. The information about the deviation is then re-
turned to the ray tracer, which updates the input parameters accordingly. This is done by 
means of automatic differentiation, for example with the backpropagation algorithm [12]. 
Hence the differentiable implementation of the renderer does not explicitly require an explicit 
implementation of the derivatives, but a suited implementation in a framework supporting au-
tomatic differentiation allows calculate the derivates automatically. 

When using diff. ray tracing at solar towers, it must be ensured that the mathematical rendering 
raytracing model under investigation is differentiable. This must also be true for the irradiance 
reaching the calibration target, which is defined as: 

 

Where tl is the vector directing from the position xij on the cal. target to position xl in the helio-

stat. nT is the normal vector on the cal. target surface.  is the reflectivity of the mirror and L 
the radiance emitted by the sun. Both functions depend on Ml, a rotation matrix depending on 
the alignment of the heliostat, defined as: 

 

ij is a binning function, which distributes the incoming rays to the lattice points ij of the resulting 
image (compare Fig. 3). For providing differentiability, it is defined as follows: 



 

where N is the number of considered nearest neighbors and xn is the nearest neighbor position 
of the defined lattice. To get the contribution at the point ij, the function is evaluated at exactly 
this point: 

 

This distribution of the ray intensity over neighboring nodes allows the entire ray tracing pro-
cess at the solar tower to be considered fully differentiable for the very first time. The training 
is further improved by additional intelligently selected loss functions. 

 

So the total loss is composed of 3 different modules. In general, L2 is defined as: 

 

where xn is the prediction and yn the target value. For L2pixel, the pixels of the irradiance 
map are compared to each other, L2alignment compares the current alignment n of the heli-
ostat with the ideal one and L2miss penalizes rays which missed the calibration target by 
measuring their distance. If all rays are hitting the cal. target, this term is 0. In addition, 
the appropriate weight decay terms are also added to L2pixel and L2alignment to further reg-
ularize the function. Lastly, the terms are scaled by constant values a, b, c, where a = 1e-5, 
b = 1 and c = 1e5, which were determined in the course of various simulations. 

Comparison to State of the Art 

The advantages of the new method compared to the state-of-the-art application can be shown 
very well within a minimal example. For this comparison, an arbitrary setup of heliostat, sun 
and calibration target is considered in both cases, but not the whole ray tracer is examined but 
the special case that not a single ray is generated. 

The classic Stone method [11], (just like the diff. ray tracer) makes use of a geometry model 
including various error parameters. The geometry model calculates the orientation nis (directing 
from the heliostat's mirror's center of mass to the measured centroid of area of its focal spot) 
and npred (calculated by the geometric model) of the heliostat from the input parameters (target 
point, sun position, heliostat position).  Both alignments are then compared to each other and 
the error parameters are updated accordingly. Classically, this is done by a regression algo-
rithm like the Levenberg-Marquardt (LM) or Newton algorithm, for example in the form: 

 

Where {} is the set of all considered error parameters and N the number of measurement 
points. The basic procedures of the classical and diff. ray tracing methods differ only in the 
calculation of the gradients. While e.g. the LM method relies on a numerical calculation of the 
Jacobian and Hessian matrix, the ray tracer uses only the Jacobian matrix calculated by auto-
matic differentiation for backpropagation. In principle, it is possible to modify the backpropaga-



tion accordingly [13][14][15]. This would be very time consuming, but in principle feasible. Con-
sidering identical geometric models and applying the same loss function Lalignment in both algo-
rithms, the results of the two algorithms would be identical, except for numerical truncation 
errors inside the classical approach (automatic differentiation is in principle accurate down to 
machine accuracy). 

 

 

Figure 4: Test losses for heliostat calibration using differentiable ray tracing over several 
epochs showing in (a) the alignment deviation of the trained heliostat to the target data set 

heliostat and (b) the angular deviation of the three error parameters inside the GM. 

Thus, both approaches can be described almost identically. However, so far only the minimal 
example has been considered. The focal spot contains much more information than just its 
center of gravity, e.g. horizontal and vertical tilt or the size of the focal spot can give further 
information about the orientation of the heliostat. Within the ray tracer, this information does 
not have to be extracted first; instead, it is possible to work directly with the images from the 
heliostat calibration. Thus, significantly more information can be accessed than is the case 
with the classical method. Furthermore, errors can be optimized which were impossible to de-
tect before, which will be shown in the following. 

Results 

 

The potential of the method is illustrated by a simple test case. For this purpose, a very simple 

geometry model for the heliostat is chosen, which contains only 3 error parameters    

(compare Fig. 1). Only  and  have an influence on the position of the focal spot.  rotates 
the focal spot around its centroid. 

To begin, a dataset containing one image is created. For this, a heliostat model with a surface 
different from an ideal heliostat is loaded into the ray tracer and random alignment errors in 

  and  are assigned to it. By means of this heliostat, exactly one focal spot image is gen-
erated on the virtual calibration target. This one image is used as a data set for training. The 
calibration process itself starts with an ideal heliostat (including an ideal surface) and optimizes 
the heliostat's alignment by varying the error parameters. 

As shown in Fig. 4 (a), the angular deviation of the initially ideal and the erroneous heliostat is 
constantly falling. Due to the simplicity of the GM, the function has only one local optimum 
which is identical to the global optimum, which is why the deviation will fall down to machine 
accuracy. This is not surprising. Other regression algorithms, such as the LM, would perform 



similarly on such a simple GM. Thus, the plot verifies only the basic functionality of the meth-

odology. Simultaneously it also shows, that  is not perceived by the alignment loss. Otherwise, 
the curve would stop at a constant value. 

More exciting is a look at the individual error parameters. Fig. 4 (b) shows very clearly how  

and  oscillate continuously towards zero, also because of the very simple GM. More exciting 
is the comparison between the lines trained with Ltotal (red and blue) with those exclusively 
trained with L2alignment (orange, light blue), meaning without using the pixel-wise loss. If all loss 
terms are used the algorithm converges much faster. 

, on the other hand, behaves completely differently. This is due to the fact that the gradients 

are formed in another way.  remains completely constant (far from the range of the plot), 

 

Figure 5: Target Image including surface deformations (left) and prediction by the diff. ray 
tracer (right) using an ideal heliostat surface. 

only using the Lalignment (or L2alignment) loss.  is only optimized over the L2pixel loss. In Fig. 4 (b), 

 was set to 17.5 rad and ends up around 1.5 mrad, a deviation which is not visible to the naked 

eye. This is especially impressive because  does not scale with distance. No matter how far 
the heliostat is from the tower, it does not make the rotation more visible. 

The result after full convergence can be seen in Fig. 5. Both images show the virtual calibration 
target including one normed focal spot each. On the left is the data set image (Target) including 
an imperfect surface for training and on the right side is the ray tracing calibration image (Pre-
diction) using the optimized parameters and a perfect flat, faceted surface is displayed.  De-
spite the considerably different surface, the position and inclination of the heliostat can be 
recognized well. 

 

Discussion 

So far, the diff. ray tracer for heliostat calibration could be theoretically presented and tested 
on minimal examples. Despite the reduced complexity of these, the advantages over classical 
regression are already apparent. 

In comparison with the current state-of-the-art algorithm, it could be shown that the ray tracer, 
not generating a single ray, and the classical algorithm are almost identical. The only difference 
in the discussed minimal example lies in the calculation of the differentials. Here, the diff. ray 
tracer already has an advantage due to the use of automatic differentiation, which provides 
smaller truncation errors than the numerical differentiation, even if this effect is very small. The 



greater advantage arises when the minimal example is left behind. Generating rays allows for 
the very first time to evaluate the calibration images directly inside calibration software. This 
increase in information per measurement is available without any need of pre-processing. The 
additional information can then help with faster convergence or higher accuracy on the same 
count of measurements, which was shown in Fig. 4 (b). On the one hand, the pixel loss helps 

with a faster convergence of  and , on the other hand,  can be corrected exclusively via this 

loss, since  has no influence on the position on the target. Beside the additional information, 
like edges, corners, etc., also e.g. errors in the determination of focal spots' centroids can be 
compensated by means of this loss (compare Fig. 5). Despite the very good qualitative results, 
a quantitative comparison especially with the state-of-the-art method and a corresponding 
complex geometry model is still pending. Here, however, the question is not so much whether 
the new method is better, but by how much. In addition, at this moment only ideal flat heliostats 
has been taken for training. Surface information can have a large impact on the results. In this 
case, specialized loss terms can be used for further improvement [16][17][18]. Here, too, a 
quantitative evaluation is still required. 

Conclusion and Outlook 

Despite the very simplistic GM model used so far, it is becoming unambiguously clear that 
heliostat calibration using diff. ray tracing is superior to classical regression and thus, with very 
little effort, the standard calibration method on most commercial towers can be improved in 
situ. The next steps clearly focus on the implementation of a fully functional geometry model 
and the realization directly at a solar tower. However, differentiable ray tracing goes far beyond 
these possibilities at the solar tower. The orientation of the heliostat is by no means the only 
parameter that can be optimized. This method can be applied to nearly every field parameter 
and thus opens up completely new possibilities. For example, surface information can be de-
rived from focal spot images too. Furthermore, whole heliostat fields can be optimized for given 
flux density distributions, including heliostat shape, position, but also e.g. tower height or re-
ceiver shape. 
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